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Kursiniy darby gynimas: Gruodzio 13, 20 d., 17:30 per Zoom.

ledger
Bookkeeping --> accounting --> balance --> state
Bookkeeping is the recording of financial transactions, and is part of the process
of accounting in business.[Xl Transactions include purchases, sales, receipts and payments by an
individual person or an organization/corporation. There are several standard methods of bookkeeping,
including the single-entry and double-entry bookkeeping systems.

From <https://en.wikipedia.org/wiki/Bookkeeping>
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511

Ethereum IBM Hyperledger Fabric - IBM HF

Authorized capital
Credit

Fixed Assets
Costs

Incomes

Op.No. Input Output RemainingAmount
1 123 0 123
2 5 11 117

Compare with UTXO system
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-

e5c84838b19
State 1 Authorized Credit Fixed Electricity Mining Percent Balance
Capital Assets  Cost for Credit
State 2 Authorized Credit Fixed Electricity Mining Percent Balance
Capital Assets  Cost for Credit
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https://en.wikipedia.org/wiki/Accounting
https://en.wikipedia.org/wiki/Business
https://en.wikipedia.org/wiki/Bookkeeping#cite_note-Weygandt,_Kieso,_Kimmel_(2003)-1
https://en.wikipedia.org/wiki/Single-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Double-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Bookkeeping
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-e5c84838b19
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-e5c84838b19
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Transaction template:
Tx_N = "TxN:In11=...| |In12=...| |Outl1=...| |Out12=...| |Recl=...| |[Rec2=...

Transactions:

Tx_1="Tx1:In11=6000] | In12=3000]| | Out11=5000]| | Out12=4000| | Rec1=B| |Rec2=A'
Tx_2='Tx2:In21=5000| | Out21=3500| | Out22=1500| | Rec1=A2| | Rec2=B'
Tx_3='Tx3:In31=3500| | Out31=3500| | Out32=0| | Rec1=E| |Rec2=A2'

>>hTx_1=h28('Tx1:In11=6000| |In12=3000| | Out11=5000| | Out12=4000| |Rec1=B| |Rec2=A')
hTx_1=5B5412B

>>hTx_1=h28(Tx_1)

hTx_1=5B5412B

>> hTx_2=h28('Tx2:In21=5000] | Out21=3500] | Out22=1500]| | Rec1=A2| |Rec2=B')
>>hTx_2=h28(Tx_2)
hTx_2 = D5C895A

>> hTx_3=h28('Tx3:In31=3500| | Out31=3500]| | Out32=0| |Rec1=E| |Rec2=A2")
>> hTx_3=h28(Tx_3)

100_011 MerkleTree.Blockchain Page 2



hTx_3 = FEC59B7

State tranasition diagramm

H-Functions. Merkle authentication tree
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Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone
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Binary trees
A binary tree is a structure consisting of vertices and directed edges. The vertices are di-
vided into three types:

1. arootvertex. The root has two edges directed towards it, a left and a right edge.

2. internal vertices. Each internal vertex has three edges incident to it — an upper edge
directed away from it. and left and right edges directed towards it.

3. leaves. Each leaf vertex has one edge incident to it, and directed away from it.

The vertices incident with the left and right edges of an internal vertex (or the root) are called
the children of the internal vertex. The internal (or root) vertex is called the parent of the
associated children. Figure 13.5 illustrates a binary tree with 7 vertices and 6 edges.

Left Edge Right Edge

i

Lealfes < Trapsodions

N

Figure 13.5: A binary tree (with 4 shaded leaves and 3 internal vertices).

Constructing and using authentication trees

Consider a binary tree T" which has t leaves. Let h be a collision-resistant hash function. 7'
can be used to authenticate ¢ public values, Y7, Yo, ..., Y;, by constructing an authentica-
tion tree T™ as follows.
1. Label each of the ¢ leaves by a unique public value Y;.
On the edge directed away from the leaf labeled Y;, put the label h(Y;).
If the left and right edge of an internal vertex are labeled h; and ha. respectively, label
the upper edge of the vertex h(hy| h2).
4. Ifthe edges directed toward the root vertex are labeled u; and w2, label the root vertex
h(u||uz).

W) 2

Once the public values are assigned to leaves of the binary tree, such a labeling is well-
defined. Figure 13.6 illustrates an authentication tree with 4 leaves. Assuming some means
to authenticate the label on the root vertex, an authentication tree provides a means to au-
thenticate any of the ¢ public leaf values Y;. as follows. For each public value Y;. there 1s
a unique path (the authentication path) from Y; to the root. Each edge on the path is a left
or right edge of an internal vertex or the root. If e is such an edge directed towards vertex
x. record the label on the other edge (not e) directed toward =. This sequence of labels (the
authentication path values) used in the correct order provides the authentication of' Y;. as 1l-
lIustrated by Example 13.17. Note that if a single leaf value (e.g., Y7 ) is altered, maliciously
or otherwise, then authentication of that value will fail.
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R = h(h:||h(Y1))

hz = h-(hlﬂh(Ys_/)ﬁ/\w/;)
Y
h(Ys)

hy = h(h(Y1)||R(Y2))

Y
h(Y1) h(Yz)

Y1 Yz

Figure 13.6: An authentication tree.

13.17 Example (key verification using authentication trees) Refer to Figure 13.6. The public

13.18

value Y7 can be authenticated by providing the sequence of labels A(Y2). h(Y3). h(Yy). The
authentication proceeds as follows: compute k(Y7 ): next compute b1 = h(h(Y1))| h(Y2)):
then compute ho = h(hq|h(Y3)): finally, accept Y7 as authentic if h(hz||h(Ys)) = R,
where the root value R is known to be authentic. U

The advantage of authentication trees is evident by considering the storage required to
allow authentication of £ public values using the following (very simple) alternate approach:
an entity A authenticates ¢ public values Y7, Y5, ... . Y; by registering each with a trusted
third party. This approach requires registration of ¢ public values. which may raise storage
1ssues at the third party when ¢ is large. In confrast. an authentication tree requires only a
single value be registered with the third party.

If'a public key Y; of an entity A is the value corresponding to a leaf in an authentication
tree, and A wishes to provide B with information allowing B to verify the authenticity of
Y:. then A must (store and) provide to B both Y; and all hash values associated with the
authentication path from Y; to the root: in addition. B must have prior knowledge and trust
in the authenticity of the root value K. These values collectively guarantee authenticity.
analogous to the signature on a public-key certificate. The number of values each party must
store (and provide to others to allow verification of its public key) is Ig(#). as per Fact 13.19.

Fact (depth of a binary tree) Consider the length of (or number of edges in) the path from
each leaf to the root in a binary tree. The length of the longest such path is minimized when
the tree is balanced. i.e.. when the tree is constructed such that all such paths differ in length
by at most one. The length of the path from a leaf to the root in a balanced binary tree
confaining ¢ leaves is about lg(¢).
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13.19 Fact (length of authentication paths) Using a balanced binary tree (Fact 13.18) as an au-
thentication tree with ¢ public values as leaves, authenticating a public value therein may
be achieved by hashing lg(#) values along the path to the root.

13.20 Remark (time-space tradeoff) Authentication trees require only a single value (the root
value) in a tree be registered as authentic, but verification of the authenticity of any particu-
lar leaf value requires access to and hashing of all values along the authentication path from

leaf to root.

13.21 Remark (changing leaf values) To change a public (leaf) value or add more values to an
authentication tree requires recomputation of the label on the root vertex. For large balanced

trees, this may involve a substantial computation. In all cases. re-establishing trust of all

users in this new root value (i.e., its authenticity) is necessary.

The computational cost involved in adding more values to a tree (Remark 13.21) may
mofivate constructing the new tree as an unbalanced tree with the new leaf value (or a sub-
tree of such values) being the right child of the root, and the old tree, the left. Another
motivation for allowing unbalanced trees arises when some leaf values are referenced far

more frequently than others.

Bitcoin transactions are permanently recorded in the network through files called blocks. Maximum
size of the block is currently limited to 1 MB but it may be increased in the future. Each block contains
a UNIX time timestamp, which is used in block validity checks to make it more difficult for adversary
to manipulate the block chain. New blocks are added to the end of the record (block chain) by
referencing the hash of the previous block and once added are never changed. A variable number of
transactions is included into a block through the merkle tree (fig 3.). Transactions in the Merkle tree are
hashed using double SHA256 (hash of the hash of the transaction message).

Transactions are included into the block’s hash indirectly through the merkle root (top hash of a merkle
tree). This allows removing old transactions (fig. 4) without modifying the hash of the block. Once the
latest transaction is buried under enough blocks, previous transactions serve only as a history of the

ownership and can be discarded to save space.
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Python
h20: 5B5412B

h21: D5C895A
h11: FEC59B7

&>

>>h20=h28(hTx_1)

h20 = 5B5412B
1—>> h21=h28(hTx z)\m >>h10=h28('5B5412B| | D5C895A')

>>h11=h28(hTx_3)
h11 = FEC59B7 |

Sha2sb

h10: 625A41F
hO: 60BA3B5

Magic Number (4)

Block Size (4)

Version (4)

Previous Block Hash (32)

-

Merkle Root(32)
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Transactions:

Tx_1 = '"Tx1:In11=6000] | In12=3000| | Out11=5000]| | Out12=4000| |Rec1=B| |Rec2=A"

Tx_2='Tx2:In21=5000| | Out21=3500| | Out22=1500| |Rec1=A2| | Rec2=B'
Tx_3='Tx3:In31=3500| | Out31=3500| | Out32=0| | Rec1=E| |Rec2=A2'

>> hTx_1=h28(Tx_1)
hTx_1 = 5B5412B

>> hTx_2=h28(Tx_2)
hTx_2 = D5C895A

>> hTx_3=h28(Tx_3)
hTx_3 = FEC59B7

hPrBl hRoot BI_N:hPrBI=0CAF06F||hRoot=2CC219F||hTx_N1=AFC73D8||hTx_N2=13251F8||hTx_N3=5B5412B||Nonce=1000 hBl_N Nonce hBI_N_Mined
O0CAFO6F  2CC219F  Bl_1:hPrBI=0CAF06F||hRoot=2CC219F||hTx_1=AFC73D8||hTx_2=13251F8||hTx_3=5B5412B||Nonce=1000 1021 06F61B0

Adeg e nuwber of vwinols 4 ny
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>>Tx_1="Tx1:In11=6000] |In12=3000| | Out11=5000| | Out12=4000| |Rec1=B| |Rec2=A'
Tx_1=Tx1:In11=6000] |In12=3000| | Out11=5000| | Out12=4000| | Rec1=B| | Rec2=A
>>hTx_1=h28(Tx_1)

hTx_1 = AFC73D8

TxN:InN1=...[InN2=...||OutN1=...||OutN2=...|[RecN1=...|[RecN2= hTx N N1 N2 N3 H(TxN1) H(TxN2) H(TxN3)
hTx N1 hTx N2 hTx N3

Tx1:In11=6000] |In12=3000| |Out11=5000| |Out12= arc7aps 1 2 3  AFc73D8 13251F8  5B54128

4000| |Rec1=B| |Rec2=A ///f\““\\\\‘ng//;g
Tx2ﬂn21=5000||Out21=3500||Out22=1500||Rec1<f%%§§>4;f/”2ﬂﬂﬂMé

=A2||Rec2=B

Tx3:In31=3500] | Out31=3500] | Out32=0| | Recl <E§§§§;Lf/////\

=E | |Rec2=A2

hPrBI hRoot BI_N:hPrBI=0CAFO06F||hRoot=2CC219F||hTx_N1=AFC73D8||hTx_N2=13251F8||hTx_N3=5B54128|[Nonce=1000 hBIl N Nonce hBl_N_Mined
OCAFOBF | 2CC219F  B|_1:hPrBI=0CAFO06F||hRoot=2CC219F||hTX_1=AFC73D8||hTx_2=13251F8||hTx_3=5B5412B||Nonce=1000 21 06F61B0

Bl_1:hPrBI=0CAFO6F | |hRoot=2CC219F | |hTx_1=AFC73D8| |hTx_2=13251F8||hTx_3=5B5412B| |Nonce=
1000

>> Bl_1Mng="'Bl_1:hPrBI=0CAFO06F | |hRoot=2CC219F| | hTx_1=AFC73D8| |hTx_2=13251F8]| |hTx_3=5B5412B| | Nonce=1000"
Bl_1Mng = Bl_1:hPrBI=0CAFO6F | |hRoot=2CC219F| |hTx_1=AFC73D8| |hTx_2=13251F8| |hTx_3=5B541
2B| |[Nonce=1000

For mining h— bt A B 1Mng il & compdal
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For W‘m/nﬁ h- vali l ﬂg %,iMr)g MM/QL/Z &DWMW/
@cmm/m/g to Diffiadty large? (D7)

>> hBl_1Mining=h28(BI_1Mining)
hBI_1Mining = B520EB3
>> hBl_1Mining=h28(Bl_1Mining)
hBI_1Mining = B4FB37A

>> hBl_1Mng=h28('Bl_1:hPrBI=0CAFO6F | | hRoot=2CC219F | |hTx_1=AFC73D8| |hTx_2=13251F8| |hTx_3=5B5412B | | Nonce=1000")
hBI_1Mng = 2520EB3

>> hBI_1Mng=h28('Bl_1:hPrBI=0CAFO6F | |hRoot=2CC219F | |hTx_1=AFC73D8| |hTx_2=13251F8| |hTx_3=5B54128 | |[Nonce=1001")
hBI_1Mng = D4FB37A

>> hBl_1Mng=h28('Bl_1:hPrBI=0CAFO6F | | hRoot=2CC219F | |hTx_1=AFC73D8| |hTx_2=13251F8| |hTx_3=5B5412B | |[Nonce=1002')
hBI_1Mng = 6ECI3FC

>> hBI_1Mng=h28('Bl_1:hPrBI=0CAFO6F | |hRoot=2CC219F | |hTx_1=AFC73D8| |hTx_2=13251F8| |hTx_3=5B5412B| |Nonce=1003')
hBI_1Mng = 98A6656

After 22 trials when Nonce=1021 the block is mined:
>> hBl_1Mng=h28('Bl_1:hPrBI=0CAFO6F | |hRoot=2CC219F| |hTx_1=AFC73D8| |hTx_2=13251F8]| |hTx_3=5B5412B| |Nonce=1021")

hBl_1Mng = 06F61B0
After 22 trials when Nonce=1021 the block is mined.

Till this place

https://medium.com/codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d7555078dd

Modified Merkle Patricia Trie (a.k.a MPT) as the method to Ifie Retyicye

save Ethereum state.

Basically, MPT is a combination of Patricia trie and Merkle

tree, with few additional optimizations that fit the

characteristics of Ethereum. Thus, an understanding of the

Patricia trie and Merkle tree should precede the understanding

of MPT. @
Patricia Trie

Patricia trie is a data structure which is also called Prefix tree, .

radix tree or trie. Trie uses a key as a path so the nodes that 7

share the same prefix can also share the same path. This

structure is fastest at finding common prefixes, simple to ‘ ‘
implement, and requires small memory. Thereby, it is 3
commonly used for implementing routing tables, systems that

9
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https://medium.com/codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d7555078dd

implement, and requires small memory. Thereby, it is
commonly used for implementing routing tables, systems that
are used in low specification machines like the router.
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Example of Patricia Trie
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